Reelin Together with ApoER2 Regulates Interneuron Migration in the Olfactory Bulb
نویسندگان
چکیده
One pathway regulating the migration of neurons during development of the mammalian cortex involves the extracellular matrix protein Reelin. Reelin and components of its signaling cascade, the lipoprotein receptors ApoER2 and Vldlr and the intracellular adapter protein Dab1 are pivotal for a correct layer formation during corticogenesis. The olfactory bulb (OB) as a phylogenetically old cortical region is known to be a prominent site of Reelin expression. Although some aspects of Reelin function in the OB have been described, the influence of Reelin on OB layer formation has so far been poorly analyzed. Here we studied animals deficient for either Reelin, Vldlr, ApoER2 or Dab1 as well as double-null mutants. We performed organotypic migration assays, immunohistochemical marker analysis and BrdU incorporation studies to elucidate roles for the different components of the Reelin signaling cascade in OB neuroblast migration and layer formation. We identified ApoER2 as being the main receptor responsible for Reelin mediated detachment of neuroblasts and correct migration of early generated interneurons within the OB, a prerequisite for correct OB lamination.
منابع مشابه
Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration.
Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), and Dab1 are the main components of the Reelin signalling cascade. Reelin is the sole ligand defined so far in signalling through this pathway. Postnatal migration of neuronal precursors from the subventricular zone (SVZ) to the olfactory bulb (OB), however, depends on ApoER2 and Dab1, but functions independent...
متن کاملReelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons.
The cytoarchitecture of the hindbrain results from precise and co-ordinated sequences of neuronal migrations. Here, we show that reelin, an extracellular matrix protein involved in neuronal migration during CNS development, is necessary for an early, specific step in the migration of several hindbrain nuclei. We identified two cell populations not previously known to be affected in reeler mutan...
متن کاملRescue of the reeler phenotype in the dentate gyrus by wild-type coculture is mediated by lipoprotein receptors for Reelin and Disabled 1.
Reelin is a positional signal for the lamination of the dentate gyrus. In the reeler mutant lacking Reelin, granule cells are scattered all over the dentate gyrus. We have recently shown that the reeler phenotype of the dentate gyrus can be rescued in vitro by coculturing reeler hippocampal slices with slices from wild-type hippocampus. Here we studied whether Reelin from other brain regions ca...
متن کاملReelin is expressed in the accessory olfactory system, but is not a guidance cue for vomeronasal axons.
Reelin is an extracellular matrix protein that regulates neuronal migration in the developing cerebral cortex, and axon outgrowth in the hippocampus. In the developing vomeronasal system, Reelin mRNA is expressed in perineural cells near the vomeronasal nerve, as well as in the vomeronasal organ, olfactory epithelium and olfactory and accessory olfactory bulbs, suggesting that it might regulate...
متن کاملApoER2 and VLDLr Are Required for Mediating Reelin Signalling Pathway for Normal Migration and Positioning of Mesencephalic Dopaminergic Neurons
The migration of mesencephalic dopaminergic (mDA) neurons from the subventricular zone to their final positions in the substantia nigra compacta (SNc), ventral tegmental area (VTA), and retrorubral field (RRF) is controlled by signalling from neurotrophic factors, cell adhesion molecules (CAMs) and extracellular matrix molecules (ECM). Reelin and the cytoplasmic adaptor protein Disabled-1 (Dab1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012